14 research outputs found

    Safety Evaluation of Turbo-Roundabouts with and without Internal Traffic Separations Considering Autonomous Vehicles Operation

    Get PDF
    The paper presents a microsimulation approach for assessing the safety performance of turbo-roundabouts where Cooperative Autonomous Vehicles “CAVs” have been introduced into the traffic mix alongside conventional vehicles “CVs”. Based on the analysis of vehicle trajectories from VISSIM and subsequent analysis of traffic conflicts through the Surrogate Safety Assessment Model (SSAM), the research aims to evaluate the safety benefits of turbo-roundabouts where the lanes are physically separated by raised curbs, compared to roundabouts without such curbs. The paper will then describe the methodological path followed to build VISSIM models of turbo-roundabouts with and without raised curbs in order to calibrate the simulation models and estimate the potential conflicts when a higher percentage of CAVs are introduced into the traffic mix. A criterion has been also proposed for setting properly the principal SSAM filters. The results confirmed both higher safety levels for turbo-roundabouts equipped with raised lane dividers compared to turbo-roundabout solutions without curbs, and better safety conditions under the traffic mix of CVs and CAVs. Therefore, it follows that, in absence of crash data including CAVs, the surrogate measures of safety are the only approach in which the safety performance of any roundabout or road entity can be evaluated

    Smart Roads: An Overview of What Future Mobility Will Look Like

    No full text
    Transport engineering has recently undergone several significant changes and innovations, one of which is the appearance and spread of autonomous vehicles; with this technology becoming more common and ordinary by the day, it is now necessary to implement some systems and contexts to facilitate autonomous vehicle operations. Consequently, a different perspective is now arising when dealing with road infrastructures, aiming to simplify and improve efficiency and maintenance of the existing roads, increase the life cycle of newly built ones, and minimize the economic and financial impact at the same time. Roadway pavements are one of the primary factors affecting vehicle operations; over time, this distinctive aspect has gone through various mechanical and physical changes due to the adoption of new materials or design methods. Consequently, to the spread of autonomous vehicles, scientific research has begun to study and develop systems to make road pavements and platforms not exclusively aimed at bearing loads, but rather at considering them as a means of communication and information exchange, if not even as a source of energy. This new approach introduces the so-called “Smart Roads,” i.e., road infrastructures capable of communicating with vehicles and self-monitoring fundamental perspectives concerning driverless vehicles and the roadway platform life cycle. This paper examines the characteristics of Smart Roads, considering their broad field of application and their potential advantages and drawbacks. This paper also pursues the objective of describing the global vision, the possible future direction of these innovations concerning the automotive and transport industries, and a particular focus on infrastructures and roadways

    Trattamento delle Lesioni Traumatiche della Milza.

    No full text

    Safety evaluation of turbo roundabout considering autonomous vehicles operation

    No full text
    A microsimulation approach was carried out in this paper to evaluate the safety performance of turbo roundabouts in which the "CAVs" of connected autonomous vehicles are mixed with the "CVs" of conventional vehicles the research aims to evaluate the advantages in terms of safety and performance of turbo roundabouts. The paper shall also lead to describe the methodological path followed to build VISSIM models of turbo roundabout changing O_D matrix as real case applications, to calibrate the simulation models, and to estimate the potential conflicts when the percentages of CAVs are introduced into the traffic mix. The results, in accordance with the existing bibliography, have shown that the safety levels and the parameters that determine an improvement in the service level in a turbo roundabouts are significantly influenced not only by the geometric characteristics, but also by the distribution of vehicular flows. Therefore, it follows that in absence of crash data including CAVs, the surrogate measures of safety must be considered a strong approach to evaluate the safety performance of a roundabout so far, any road entity

    Safety evaluation of turbo roundabout with and without internal traffic separations considering autonomous vehicles operation

    No full text
    The paper presents a microsimulation approach for assessing the safety performance of turbo-roundabouts where Cooperative Autonomous Vehicles “CAVs” have been mixed with conventional vehicles “CVs”. Based on the analysis of vehicle trajectories from VISSIM and subsequent analysis of traffic conflicts through the Surrogate Safety Assessment Model (SSAM), the research aims to evaluate the safety benefits of turbo-roundabouts where the lanes are physically separated by raised curbs compared to roundabouts without curbs. The paper shall also lead to describe the methodological path followed to build VISSIM models of turboroundabout with and without raised curbs, to calibrate the simulation models, and to estimate the potential conflicts when the percentages of CAVs are introduced into the traffic mix. A criterion has been also proposed for setting properly the principal SSAM filters. The results confirmed both higher safety levels for turbo roundabouts equipped with raised lane dividers compared to turbo roundabout solutions without curbs, and better safety conditions under traffic mix with CAVs. Therefore, it follows that in absence of crash data including CAVs, the surrogate measures of safety are the only approach to evaluate the safety performance of a roundabout and any road entit

    Analysis and Evaluation of Ramp Metering: From Historical Evolution to the Application of New Algorithms and Engineering Principles

    No full text
    In the modern era, characterized by intense urbanization and frequent travel between interconnected communities, the constant expansion of cities, associated with high densities and growing need for traveling, has led to a significant increase in road traffic volumes. More than ever, road traffic today requires effort to be managed effectively in order to improve performance and safety conditions, given the greater probability of unpleasant events such as accidents or road congestion with related delays and the increased stress levels of the user and infrastructure. Fortunately, there are already various engineering tools, such as ramp metering, that can be used for this purpose. Ramp metering allows for achieving the aforementioned desired benefits, including improving mobility, reliability, efficiency, and safety, and even reducing environmental impact. It also has been shown to be cost-effective from the existing literature. Further research will be necessary to strengthen the quality, efficacy, and efficiency of ramp metering, especially considering the fast-paced progress in technology (e.g., connected autonomous vehicles and drones used for surveys) and new challenging scenarios (e.g., congested industrial areas and emergency vehicles). This review’s scope is to present a general overview of principal ramp metering solutions, focusing on current research studies in the last couple of years and highlighting some of the main algorithms used for this purpose, depending on diverse scenarios. With this article, the authors desire to present the subject of ramp metering, providing a general overview of its story, evolution, and recent analytical models

    Analysis and Evaluation of Ramp Metering: From Historical Evolution to the Application of New Algorithms and Engineering Principles

    No full text
    In the modern era, characterized by intense urbanization and frequent travel between interconnected communities, the constant expansion of cities, associated with high densities and growing need for traveling, has led to a significant increase in road traffic volumes. More than ever, road traffic today requires effort to be managed effectively in order to improve performance and safety conditions, given the greater probability of unpleasant events such as accidents or road congestion with related delays and the increased stress levels of the user and infrastructure. Fortunately, there are already various engineering tools, such as ramp metering, that can be used for this purpose. Ramp metering allows for achieving the aforementioned desired benefits, including improving mobility, reliability, efficiency, and safety, and even reducing environmental impact. It also has been shown to be cost-effective from the existing literature. Further research will be necessary to strengthen the quality, efficacy, and efficiency of ramp metering, especially considering the fast-paced progress in technology (e.g., connected autonomous vehicles and drones used for surveys) and new challenging scenarios (e.g., congested industrial areas and emergency vehicles). This review’s scope is to present a general overview of principal ramp metering solutions, focusing on current research studies in the last couple of years and highlighting some of the main algorithms used for this purpose, depending on diverse scenarios. With this article, the authors desire to present the subject of ramp metering, providing a general overview of its story, evolution, and recent analytical models

    On BRT Spread around the World: Analysis of Some Particular Cities

    No full text
    The goal of civil engineering has always been the research and implementation of methods, technologies, and infrastructures to improve the community’s quality of life. One of the branches of civil engineering that has the strongest effect on progress is transport. The quality of transport has a profound economic and social impact on our communities regarding trade (freight transport) and city livability (public transport systems). However, innovation is not the only way to improve the features above-mentioned, especially public transport, considering that it is usually beneficial to enhance and repurpose vehicles with appropriate adjustments to offer more efficient services. Other perspectives that influence public transport systems are the costs and times of design and construction, maintenance, operating costs, and environmental impact, especially concerning CO2 emissions. Considering these issues, among the various types of existing public transport systems, those of the so-called Bus Rapid Transit (BRT) offer worthwhile results. The BRT system is a type of public road transport operated by bus on reserved lanes, and it is significantly profitable, especially from an economic point of view, in areas where there are existing bus routes. Nonetheless, for the construction of works minimization, it is closely linked to other features that improve its usefulness, depending on the vehicles’ quality such as capacity, but above all, the propulsion or driving autonomy that would guarantee high efficiency. This paper introduces an analysis of some BRT systems operating worldwide, presenting the background, general technical features, and the correlation with autonomous vehicles

    Safety Evaluation of Flower Roundabout Considering Autonomous Vehicles Operation

    Get PDF
    With the significant technological growth that affected autonomous vehicles in the last decade, several consequences occurred as: human factor exclusion, entry and exit manoeuvres precision from roundabouts, and headway reduction. In this paper, it was carried out a microsimulation approach study that aims to evaluate benefits in terms of safety obtained with flower roundabouts in a scenario where traffic is characterized by conventional vehicles “CVs” and Connected Autonomous Vehicles “CAVs”. This study focused on the evaluation of CAVs and CVs operation with the presence of the so called “weak users” or rather, pedestrians and bikes. Then, simulated scenarios were characterized by the presence of zebra-crossings in main roads, positioned at 20 m from circulatory carriageway edges. Micro simulation choice is due to the absence of survey data collection because the presence of CAVs in ordinary traffic is still minimal. The micro simulation was carried out through VISSIM, so it was operated with a specific methodological path, consisting, in the application, of O–D matrix based on real cases, in order to achieve an assessment of potential conflicts in relation with the increase in CAVs. Simulation results showed that higher safety levels were achieved for special cases of O–D distribution and with CAVs present. Finally, considering crash absence in results related to CAVs presence, safety interventions of such roundabout types have to be thorough. There were 10 O/D matrices analysed through VISSIM considering parameters as: average tail length, maximum tail length, average speed, vehicles, and number of stops quantity. As reported in the conclusion section, O/D matrices that showed minimum conflicts and maximum dynamic performances were identified

    Rheological Behaviour of a Bitumen Modified with Metal Oxides Obtained by Regeneration Processes

    No full text
    Nowadays, one important challenge is to demonstrate an innovative and integrated approach for the sustainable construction of roads considering the whole life cycle of the infrastructure. Road pavements with multiple asphalt layers generally undergo prolonged environmental exposure and the alternation between solar irradiation and low temperatures. As a result, relaxation or progressive removal of the material with a negative impact on the resistance to plastic deformation occur, also leading to the formation of slits and to dimensional variations, which are commonly defined as thermal cracking. This suggests the use of suitable bitumen modifiers. For these, important parameters are the optimal mixing time and mixing temperature, in order to reduce problems related to the stability of the bitumen. Therefore, the behaviour, upon changing the temperature, of bituminous mixtures containing (as fillers) a series of metal oxides coming, as secondary products, from spent acid solutions regeneration processes, was investigated. This is intended in order to recover and reuse those otherwise dangerous wastes coming from several industrial (especially, metallurgical) processes. The study was aimed at evaluating the properties of bituminous blends by performing rheological tests under dynamic shear regime. More specifically, five different bitumen matrices were prepared (70/100 bitumen and blends with metal oxides and/or SBS copolymer). Results showed that the addition of iron oxides leads to an increase of the softening point and the complex modulus. The increase is even more emphasized when SBS is added to the blend
    corecore